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Abstract. A modification to supplement the experimental procedure required to identify the
symmetry of point and axial defects in silicon via photoluminescent piezo-spectroscopy is reported.
The modification requires that uniaxial stress be applied along a crystal direction of very low
symmetry such that all orientational degeneracy is removed. Theoretical shift rate equations for
all orientationally degenerate transitions and electronically degenerate states in a tetrahedral host
crystal are calculated for stress applied along an arbitrary direction (XY Z). These calculations
are corroborated against the predictions of previous work and are used to successfully predict the
stress induced splitting of the 983.21 MeV CdA line in silicon under stress along the (1 3 6) crystal
axis. The advantages this low-symmetry-axis perturbation-spectroscopy (LSAPS) technique offers
in conjunction with standard uniaxial stress analysis techniques are discussed.

1. Introduction

Piezo-spectroscopy is a widely used technique for identifying the electronic environment and
symmetry properties of optically active defects in crystals [1–3]. The technique involves
applying a uniaxial stress along the major axis of a parallelepiped-shaped, oriented crystal
sample. The applied stress causes optical transitions that originate at defects within the
crystal to shift or split into a number of sub-components. The symmetry of the defect and
the electronic nature of the transition can then in principle be determined from the number,
shift rate and polarization intensities of the stress-induced components. Piezo-spectroscopic
studies of defects in zincblende or diamond-type crystals usually require stress to be applied
to three oriented samples aligned along the (1 1 1), (1 1 0) and (0 0 1) crystal axes (though
occasionally only two of these axes are used), in order to uniquely identify the observed
transition and defect symmetry [3–5].

There are a number of practical difficulties involved in making reliable stress
measurements. Uniaxial stress studies of the photoluminescence (PL) or absorption spectra
originating from axial defects in many semiconductors are complicated by the necessity to
apply high stresses to oriented samples maintained at liquid helium temperatures in order to
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resolve the spectral detail required for reliable results [6]. Further complications occur if the
stress and/or the sample are misaligned either by incorrect mounting within the stress cell
or faulty alignment of the sample during the orientation procedure. Consequently, obtaining
complete uniaxial stress data for each of the (1 1 1), (1 1 0) and (0 0 1) crystal directions can be
a lengthy procedure.

Apart from these practical considerations there are a number of more fundamental
difficulties associated with deducing the defect symmetry from traditional stress methods only.
Firstly, the presence of higher-lying excited states which may interact with the lowest excited
state to produce level anti-crossing effects complicates matters to a great extent. The additional
free parameters describing the coupling between levels and the behaviour of the higher level(s)
(on which data are often quite poor due to thermalization effects at low temperatures) mean
that unambiguous identification of the symmetry from the normal procedures is often not
possible. An example of such possible ambiguity would be the cases of transitions at centres
with monoclinic I symmetry and A–E transitions at trigonal centres, both of which split into
two, three and four components under (0 0 1), (1 1 1) and (1 1 0) stress respectively [3]. In the
presence of inter-level repulsion the additional free parameters mean that in many cases these
two possibilities may not be unambiguously distinguished [8].

While the (polarized) intensities of the various sub-components in principle also help in
identifying the symmetry of the defect, in practice polarization measurements are often poor
(particularly in PL measurements due to multiple depolarizing internal reflections). Even the
absolute intensities can often be confusing, due to various other stress-induced effects which
cause the component intensities to change, such as coupling with higher excited states, and
exciton debinding/disassociation at high stresses [8].

In this report, we show that the application of a uniaxial stress on a single sample that is
oriented along a crystal direction of very low symmetry, such as (1 3 6) for example, removes
all orientational and electronic degeneracy for all transitions that can arise in a host lattice
of cubic symmetry. We suggest that the use of the LSAPS technique in conjunction with
traditional stress measurements will be helpful in clarifying cases of possible ambiguity by
allowing complete removal of all degeneracy (both orientational and electronic). The effects
of an arbitrary low-symmetry stress on defects in cubic crystals are given in the absence of
inter-level interactions for all defect classes.

2. Experiment

We decided to use the so-called CdA defect in Czochralski (CZ) silicon as a test case for the
LSAPS technique as this case is reasonably well characterized by traditional stress methods.
Si:Cd samples were produced by cadmium ion implantation into high-resistivity CZ material
as described in more detail by McGlynn et al [8]. The samples were RCA cleaned and
annealed in a clean quartz tube for a period of 30 minutes at 550 ◦C. Samples were cut
into rectangular parallelepipeds (with approximate dimensions 10 mm × 3 mm × 1.5 mm),
with the sample long axis nominally parallel to the (1 3 6) crystal axes while the other sides
were along (3 1 −1)- and (9 −19 8)-type axes. These samples were supplied to us by Virginia
Semiconductor Corporation. The luminescence was excited using the 514 nm line of an
argon-ion laser, and the excitation power was typically ∼200 mW (unfocused) on the sample
face and the data were recorded using a Bomem DA8 FTIR spectrometer, coupled to an LN2

cooled North Coast germanium detector model EO-817 ED2. An Oxford Instruments CF1204
helium flow cryostat was used for low-temperature uniaxial stress experiments. The details of
the apparatus used for the uniaxial stress measurements are described elsewhere [6].
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Figure 1. (a) A schematic representation of a C2v symmetry defect within a Td lattice showing the
(0 0 1) rotation axis, (1 1 0)-type reflection planes and the (1 3 6) stress direction. (b) Similar to (a)
but rotated through 90◦ about the (0 0 1) axis.

3. Theory

3.1. Defects with orientational degeneracy

Defects in crystals of cubic lattice symmetry such as silicon can possess one of several possible
symmetry configurations: tetrahedral (Td), tetragonal (D2d), trigonal (C3v), rhombic I (C2v),
rhombic II (D2), monoclinic I (C1h), monoclinic II (C2) or triclinic (C1). In this section we will
only consider optical transitions occurring between levels possessing no electronic degeneracy.
Uniaxial stress perturbations along any one of the (1 1 1), (1 1 0), or (0 0 1) directions will not
remove all the orientational degeneracy of transitions between levels occurring about axial
defects possessing any of these symmetry subgroups. It is for this reason that the accepted
practice is to obtain three sets of uniaxial stress data corresponding to stress applied along each
of the (1 1 1), (1 1 0) and (0 0 1) directions at different times. In principle this overspecifies
the defect symmetry, with more stress components than unknown stress parameters, allowing
a check of the quality of fit. The inability of these stresses to remove all the orientational
degeneracy of transitions originating from defects with the symmetries listed earlier arises
primarily from the fact that the unit vectors defining these three major crystal directions all
have equal magnitude in the x and y directions. This, in turn, stems from the fact that the
(1 1 1), (1 1 0) and (0 0 1) directions all lie in the [1 1 0] plane. Consequently the components
of any applied stress along the x and y directions for any of these defect symmetries are always
identical.

In order to remove as much orientational degeneracy as possible we could instead apply
uniaxial stress along a crystal direction (XY Z) such that:

|X| �= |Y | �= |Z| (1)

and

|X − Y | �= |Y − Z| �= |Z −X|. (2)

For example, the direction (1 3 6) would satisfy these conditions. For the sake of brevity
we show how stress applied along this direction would affect an optical transition between
electronically non-degenerate levels originating about a defect of rhombic I (C2v) symmetry
and then list the results, calculated in a similar manner for the other six subgroups of Td.
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The symmetry operations of the C2v point group are the identity, one C2 rotation and two
σ reflections in planes parallel to the C2 axis [5]. Two schematic views of a C2v symmetry
defect are shown in figures 1(a) and (b). The defect possesses a C2 rotation axis along the
(0 0 1) direction, and two σv (1 1 0)-type reflection planes. The smaller black circles lying on
each vector denote their point of exit from the defect unit cell. The (1 3 6) stress direction is
clearly visible and is observed to lie outside all axes and planes of symmetry.

We define three mutually orthogonal, local (or defect) axes X, Y and Z to characterize
each of the six inequivalent defect configurations of the rhombic I defect.

We define the matrix Td such that:

Td =




X Y Z

X Ȳ Z̄

X̄ Ȳ Z

X̄ Y Z̄

Ȳ Z X̄

Z̄ X̄ Y

Z X Y

Y Z X

Ȳ Z̄ X

Z X̄ Ȳ

Y Z̄ X̄

Z̄ X Ȳ

X̄ Z̄ Y

X̄ Z Ȳ

Z̄ Ȳ X

Z Ȳ X̄

Y X̄ Z̄

Ȳ X Z̄

X Z̄ Ȳ

X Z Y

Z̄ Y X̄

Z Y X

Y X Z

Ȳ X̄ Z




. (3)

The 24 rows in this matrix correspond to the 24 inequivalent (XY Z)-type axes that are possible
for a Td crystal.We define the crystal axes x, y and z such that:

x = (1 0 0) (4)

y = (0 1 0) (5)

z = (0 0 1). (6)

The strain tensor Sij is defined as:

Sij = |S| cos(S, i) cos(S, j) i, j ∈ x, y, z (7)

where cos(S, i) is the cosine of the angle between the direction of the stress vector S and the
ith defect axis. The Sij value for each inequivalent (XY Z)-type direction can be calculated
as follows:

Sx = Td ∗ x (8)

Sy = Td ∗ y (9)

Sz = Td ∗ z. (10)
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Table 1. Stress potentials for electronically non-degenerate defects.

Group Stress potential

Td A1(Sxx + Syy + Szz)
D2d A1Szz + A2(Sxx + Syy)
C3v A1(Sxx + Syy + Szz) + 2A2(Sxy + Syz + Szx)
C2v A1Szz + A2(Sxx + Syy) + 2A3Sxy

D2 A1Sxx + A2Syy + A3Szz

C1h A1Szz + A2(Sxx + Syy) + 2A3Sxy + 2A4(Syz − Szx)
C2 A1Szz + A2Sxx + A3Syy + 2A4Sxy

C1 A1Szz + A2Sxx + A3Syy + 2A4Sxy + 2A5Syz + 2A6Szx

The Sij stress tensor is calculated from the array product [7] (denoted by ‘*’) of the Si and Sj
matrices, i.e.

Sij = Si ∗ Sj i, j ∈ x, y, z. (11)

Using the theory of Kaplyanskii [1] and crystal coordinates we note that the action of the
applied stress on a defect of C2v symmetry can be modelled using the stress potential V given
by:

V = A1Szz + A2(Sxx + Syy) + 2A3Sxy. (12)

The stress potentials for transitions occurring at all electronically non-degenerate transitions
in a Td host crystal are given [1] in table 1. The Ai values are characteristic of each defect.
V will be a 24 × 1 column matrix, each row of which corresponds to the shift rate induced at
a defect by each of the 24 inequivalent (XY Z) stress directions in a Td host crystal. For the
case of an optical transition at a defect of C2v symmetry, the zero-stress PL line will split into
six components under stress, each with shift rate Ri (i ∈ 1 to 6):

R1 = A1X
2 + A2(Y

2 + Z2) + 2A3YZ (13)

R2 = A1X
2 + A2(Y

2 + Z2)− 2A3YZ (14)

R3 = A1Y
2 + A2(X

2 + Z2) + 2A3ZX (15)

R4 = A1Y
2 + A2(X

2 + Z2)− 2A3ZX (16)

R5 = A1Z
2 + A2(X

2 + Y 2) + 2A3XY (17)

R6 = A1Z
2 + A2(X

2 + Y 2)− 2A3XY. (18)

Consequently we can see that uniaxial stress applied along the (XY Z) crystal direction
removes all orientational degeneracy, if X, Y and Z satisfy the conditions laid out in
equations (1) and (2).

The theoretical shift rate equations for all orientationally degenerate but electronically
non-degenerate transitions in a Td symmetry host crystal, calculated by similar means, are
given in tables 2 and 3.

3.2. Defects with electronic degeneracy

For the case of defects with sufficiently high symmetry to possess electronic as well as
orientational degeneracy, such as trigonal, tetragonal and tetrahedral defects, the argument
is only slightly more complicated. Just as in the case of the non-degenerate states described
above, the 24 inequivalent directions are described by the matrix Td of equation (3). The stress
tensor Sij is calculated as in equations (8)–(11). The difference for electronically degenerate
defects arises from the fact that the action of the applied stress on the electronically degenerate
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Table 2. Shift rate equations for non-degenerate defect states under unit stress along the (X Y Z)
direction.

Transition Shift rate equationa

Triclinic A1X
2 + A2Y

2 + A3Z
2 + 2A4XY + 2A5YZ + 2A6ZX

(C1) A1X
2 + A2Y

2 + A3Z
2 − 2A4XY + 2A5YZ − 2A6ZX

A to A A1X
2 + A2Y

2 + A3Z
2 + 2A4XY − 2A5YZ − 2A6ZX

A1X
2 + A2Y

2 + A3Z
2 − 2A4XY − 2A5YZ + 2A6ZX

A1X
2 + A2Z

2 + A3Y
2 + 2A4ZX + 2A5YZ + 2A6XY

A1X
2 + A2Z

2 + A3Y
2 − 2A4ZX + 2A5YZ − 2A6XY

A1X
2 + A2Z

2 + A3Y
2 + 2A4ZX − 2A5YZ − 2A6XY

A1X
2 + A2Z

2 + A3Y
2 − 2A4ZX − 2A5YZ + 2A6XY

A1Y
2 + A2X

2 + A3Z
2 + 2A4XY + 2A5ZX + 2A6YZ

A1Y
2 + A2X

2 + A3Z
2 − 2A4XY + 2A5ZX − 2A6YZ

A1Y
2 + A2X

2 + A3Z
2 + 2A4XY − 2A5ZX − 2A6YZ

A1Y
2 + A2X

2 + A3Z
2 − 2A4XY − 2A5ZX + 2A6YZ

A1Y
2 + A2Z

2 + A3X
2 + 2A4YZ + 2A5ZX + 2A6XY

A1Y
2 + A2Z

2 + A3X
2 − 2A4YZ + 2A5ZX − 2A6XY

A1Y
2 + A2Z

2 + A3X
2 + 2A4YZ − 2A5ZX − 2A6XY

A1Y
2 + A2Z

2 + A3X
2 − 2A4YZ − 2A5ZX + 2A6XY

A1Z
2 + A2X

2 + A3Y
2 + 2A4ZX + 2A5XY + 2A6YZ

A1Z
2 + A2X

2 + A3Y
2 − 2A4ZX + 2A5XY − 2A6YZ

A1Z
2 + A2X

2 + A3Y
2 + 2A4ZX − 2A5XY − 2A6YZ

A1Z
2 + A2X

2 + A3Y
2 − 2A4ZX − 2A5XY + 2A6YZ

A1Z
2 + A2Y

2 + A3X
2 + 2A4YZ + 2A5XY + 2A6ZX

A1Z
2 + A2Y

2 + A3X
2 − 2A4YZ + 2A5XY − 2A6ZX

A1Z
2 + A2Y

2 + A3X
2 + 2A4YZ − 2A5XY − 2A6ZX

A1Z
2 + A2Y

2 + A3X
2 − 2A4YZ − 2A5XY + 2A6ZX

Monoclinic I A1X
2 + A2(Y

2 + Z2) + 2A3YZ + 2A4(ZX −XY)
(C1h) A1X

2 + A2(Y
2 + Z2)− 2A3YZ + 2A4(ZX +XY)

A′ to A′ A1X
2 + A2(Y

2 + Z2) + 2A3YZ − 2A4(ZX −XY)
A′′ to A′′ A1X

2 + A2(Y
2 + Z2)− 2A3YZ − 2A4(ZX +XY)

A′ to A′′ A1Y
2 + A2(X

2 + Z2) + 2A3ZX + 2A4(XY − YZ)
A1Y

2 + A2(X
2 + Z2)− 2A3ZX + 2A4(XY + YZ)

A1Y
2 + A2(X

2 + Z2) + 2A3ZX − 2A4(XY − YZ)
A1Y

2 + A2(X
2 + Z2)− 2A3ZX − 2A4(XY + YZ)

A1Z
2 + A2(X

2 + Y 2) + 2A3XY + 2A4(YZ − ZX)
A1Z

2 + A2(X
2 + Y 2)− 2A3XY + 2A4(YZ + ZX)

A1Z
2 + A2(X

2 + Y 2) + 2A3XY − 2A4(YZ − ZX)
A1Z

2 + A2(X
2 + Y 2)− 2A3XY − 2A4(YZ + ZX)

Monoclinic II A1X
2 + A2Y

2 + A3Z
2 + 2A4YZ

(C2) A1X
2 + A2Y

2 + A3Z
2 − 2A4YZ

A to A A1X
2 + A2Z

2 + A3Y
2 + 2A4YZ

A to B A1X
2 + A2Z

2 + A3Y
2 − 2A4YZ

B to B′ A1Y
2 + A2X

2 + A3Z
2 + 2A4ZX

A1Y
2 + A2X

2 + A3Z
2 − 2A4ZX

A1Y
2 + A2Z

2 + A3X
2 + 2A4ZX

A1Y
2 + A2Z

2 + A3X
2 − 2A4ZX

A1Z
2 + A2X

2 + A3Y
2 + 2A4XY

A1Z
2 + A2X

2 + A3Y
2 − 2A4XY

A1Z
2 + A2Y

2 + A3X
2 + 2A4XY

A1Z
2 + A2Y

2 + A3X
2 + 2A4XY

a N.B. All equations should be divided by (X2 + Y 2 + Z2).
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Table 3. Shift rate equations for non-degenerate defect states under unit stress along the (XY Z)
direction.

Transition Shift rate equationa

Tetragonal A1X
2 + A2(Y

2 + Z2)

(D2d) A1Y
2 + A2(X

2 + Z2)

A to B A1Z
2 + A2(X

2 + Y 2)

Trigonal A1(X
2 + Y 2 + Z2) + 2A2(XY + YZ + ZX)

(C3v) A1(X
2 + Y 2 + Z2)− 2A2(XY − YZ + ZX)

A to A A1(X
2 + Y 2 + Z2) + 2A2(XY − YZ − ZX)

A1(X
2 + Y 2 + Z2)− 2A2(XY + YZ − ZX)

Rhombic I A1X
2 + A2(Y

2 + Z2) + 2A3YZ

(C2v) A1X
2 + A2(Y

2 + Z2)− 2A3YZ

A to A A1Y
2 + A2(X

2 + Z2) + 2A3ZX

A to B A1Y
2 + A2(X

2 + Z2)− 2A3ZX

B to B A1Z
2 + A2(X

2 + Y 2) + 2A3XY

A1Z
2 + A2(X

2 + Y 2)− 2A3XY

Rhombic II A1X
2 + A2Y

2 + A3Z
2

(D2) A1X
2 + A2Z

2 + A3Y
2

A to B A1Y
2 + A2X

2 + A3Z
2

A1Y
2 + A2Z

2 + A3X
2

A1Z
2 + A2X

2 + A3Y
2

A1Z
2 + A2Y

2 + A3X
2

a N.B. All equations should be divided by (X2 + Y 2 + Z2).

defect state is now modelled by diagonalizing the matrix VW∗, which, for example at a doubly
degenerate (E) state at a trigonal defect, is given by [9]

VW∗ =
(
α − β γ

γ α + β

)
(19)

where

α = A1(Sxx + Syy + Szz) + 2A2(Syz + Szx + Sxy) (20)

β = B(2Szz − Syy − Sxx) + C(2Sxy − Syz − Szx) (21)

γ =
√

3B(Sxx − Syy) +
√

3C(Syz − Szx). (22)

B andC are the matrix elements of the stress operators between the Ex and Ey basis states [10]
and characterize the defect identity in the same manner as A1 and A2. Thus in the case of
electronic degeneracy, the 24 inequivalent directions give rise to 24 matrices VW∗, which give
the shift rates corresponding to the lifting of both electronic and orientational degeneracies
when diagonalized. For example, in the case of an E state at a trigonal defect, the optical
transition will split into eight different components (four inequivalent orientations of the
defect with two electronic levels per orientation) as given in table 4. The splitting patterns for
transitions between a non-degenerate ground state and all electronically degenerate states at
trigonal, tetragonal and tetrahedral defects are given in tables 4–6.

3.3. Additional comments

We have not calculated intensity information for any of the stress sub-components listed
in tables 2–4, nor do we make but a passing reference to them in sections 4 and 5, for a
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Table 4. Shift rate equations for trigonal E states under unit stress along the (XY Z) direction.

Interaction General shift Inequivalent stress axis and
matrix rate equationa shift rate equation componentsa

(
α − β γ

γ α + β

)
α ±

√
β2 + γ 2 XY Z α = A1(X

2 + Y 2 + Z2) + 2A2(XY + YZ + ZX)

β = B(2Z2 −X2 − Y 2) + C(2XY − YZ − ZX)
γ = √

3B(X2 − Y 2) +
√

3C(YZ − ZX)
X Y Z α = A1(X

2 + Y 2 + Z2) + 2A2(XY − YZ − ZX)
β = B(2Z2 −X2 − Y 2) + C(2XY + YZ + ZX)

γ = √
3B(X2 − Y 2) +

√
3C(YZ − ZX)

X̄ Y Z̄ α = A1(X
2 + Y 2 + Z2)− 2A2(XY − YZ + ZX)

β = B(2Z2 −X2 − Y 2)− C(2XY + YZ − ZX)
γ = √

3B(Y 2 −X2) +
√

3C(YZ + ZX)

X Y Z α = A1(X
2 + Y 2 + Z2)− 2A2(XY + YZ − ZX)

β = B(2Z2 −X2 − Y 2) + C(2XY − YZ + ZX)

γ = √
3B(Y 2 −X2) +

√
3C(YZ + ZX)

a N.B. All equations should be divided by (X2 + Y 2 + Z2).

Table 5. Shift rate equations for tetragonal E states under unit stress along the (XY Z) direction.

Interaction General shift Inequivalent stress axis and
matrix rate equationa shift rate equation componentsa

(
α − β γ

γ α + β

)
α ±

√
β2 + γ 2 XY Z α = A1Z

2 + A2(X
2 + Y 2)

β = B(X2 − Y 2)

γ = CXY
Y ZX α = A1X

2 + A2(Y
2 + Z2)

β = B(Y 2 − Z2)

γ = CYZ
ZX Y α = A1Y

2 + A2(X
2 + Z2)

β = B(X2 − Z2)

γ = CZX
a N.B. All equations should be divided by (X2 + Y 2 + Z2).

number of reasons. Firstly, even in the case of electronically non-degenerate defects (for
which the polarized intensities may be calculated relatively easily if the orientations of the
three crystal faces are known [1, 2]), for an arbitrary low-symmetry stress direction, the crystal
becomes bi-axial. Consequently the perpendicular polarizations depend on the choice of
viewing direction, for which there is no natural choice in the case of LSAPS (unlike a (1 1 0)
stress, where the (0 0 1) and (1 1̄ 0) directions suggest themselves naturally). In the case
of electronically degenerate states, the problem is more fundamental. The matrix elements
in VW∗ are functions of stress; hence the composition of the eigenfunctions (and transition
probability) changes with stress for low-symmetry-axis stress directions [9]. Secondly, we
propose the LSAPS technique as a supplement to the traditional stress methods, which will
have greatest benefit in distinguishing between various possibilities which cannot be resolved
via the normal technique, rather than as a stand-alone method. In these cases the most important
considerations in resolving the confusion will be knowledge of the number of components and
their shift rates.



Stress perturbations along arbitrary directions 7063

Table 6. Shift rate equations for tetrahedral E, T and �8 states under unit stress along the (XY Z)
direction are the eigenvalue equations of the corresponding interaction matrix.

State Interaction matrix Eigenvaluesa

E

(
α − β γ

γ α + β

)
α ±

√
β2 + γ 2 α = A(X2 + Y 2 + Z2)

β = B(2Z2 −X2 − Y 2)

γ = √
3B(X2 + Y 2)

T1 or T2 Explicit eigenvalue equations α = A(X2 + Y 2 + Z2)
(
α + β1 γ3 γ2
γ3 α + β2 γ1
γ2 γ1 α + β3

)
for this matrix are too β1 = B(2X2 − Y 2 − Z2)

cumbersome for this space, β2 = B(2Y 2 −X2 − Z2)

but easily solved β3 = B(2Z2 −X2 − Y 2)

(equations available on request) γ1 = C Y Z
γ2 = C XZ
γ3 = C X Y

�8 α ±
√
β2 + |γ 2| + |δ2| α = A(X2 + Y 2 + Z2)



α − β γ ∗ δ∗ 0
γ α + β 0 δ∗
δ 0 α + β −γ ∗
0 δ −γ α − β


 β = B(2Z2 −X2 − Y 2)

γ = C(−YZ + iXZ)

δ = √
3B(X2 − Y 2) + iC X Y

a N.B. All equations should be divided by (X2 + Y 2 + Z2).

It is also appropriate to comment at this point that the LSAPS technique will only be
possible in high-quality materials systems (such as Si, Ge, C, GaAs etc) where the narrow
line widths of optical transitions will in principle allow the relatively large number of sub-
components produced by the LSAPS to be resolved. Even in the situation where all components
are not fully resolved however, it remains the case that the technique may successfully
distinguish between various possibilities by placing lower bounds on the number of possible
components.

4. Results

4.1. Theoretical validation

The validity of the theory used to evaluate the low-symmetry-axis perturbation spectroscopy
(LSAPS) effects was confirmed by using it to successfully predict the number of stress induced
components and their shift rates for all transitions occurring about defects with symmetries that
are sub-groups of Td under (1 1 1), (1 1 0) and (0 0 1) stresses, as reported by Kaplyanskii [1, 2]
and Mohammed et al [3].

4.2. Experimental validation—CdA (C2v) system in silicon

Uniaxial stress was applied to an Si:Cd sample, oriented nominally along the (1 3 6) crystal
direction. The stress induced splitting of the 983.21 MeV CdA [8] zero-phonon PL transition
was observed. Previous studies [8] have identified this PL system as possessing rhombic I C2v

symmetry. In figures 2 and 3 we see that the line splits into six stress induced components
(numbered L1 to L6 in ascending order of line energy) consistent with the C2v defect symmetry
reported previously [8]. The solid lines in figure 3 are fits to the theoretical shift rate equations
listed in table 3 for a C2v defect for X = 1, Y = 3, Z = 6, A1 = −46.3 MeV GPa−1,
A2 = 12.88 MeV GPa−1 and A3 = −17.55 MeV GPa−1. These Ai values are in good
agreement with the values found previously [8] (see table 7).
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Figure 2. Representative spectra at T = 10 K of the 983.21 MeV CdA line in silicon [8] under
stress along the (1 3 6) direction at (a) 0 MPa, (b) 47 MPa and (c) 89 MPa.

We note that the intensities of the stress sub-components are not constant as a function
of stress, and in fact the components L3, L4, L5 and L6 all reduce in intensity compared
to L1 and L2. The lines L4 and L6 show the largest reduction in intensity, whereas L3 and
L5 show a smaller reduction in intensity as stress increases. This behaviour has been seen
for the CdA defect previously [8], where a reduction in intensity of certain sub-components
was observed (most noticeably under 〈0 0 1〉 stress). This was attributed to a stress induced
change in the ability of the orientationally inequivalent centres to bind one or both of the
excitonic particles at the defect, and it may be shown that the effect is most pronounced
for defects whose principal (C2) axis is orthogonal to the stress direction. The reduction in
intensity observed here is in agreement with the previous measurements. The pair of lines
showing the strongest reduction in intensity (L4 and L6) corresponds to defect orientations
whose principal axes are oriented at an angle of 81◦ to the nominal 〈1 3 6〉 stress direction.
L3 and L5 have their principal axes oriented at 64◦ to the stress axis, and L1 and L2 have
their principal axes oriented at 28◦ to the stress direction. Thus as the defect principal axis
makes a larger angle to the stress direction, the line intensity reduces in agreement with the
observations in [8].
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Figure 3. Fan diagram showing the stress induced splitting of the 983.21 MeV CdA line in
silicon [8] under (1 3 6) stress. Dashed lines represent theoretical fits using the Ai values reported
by McGlynn et al [8] and stress along (1 3 6). Solid lines assume stress along (14 33 61), i.e. a
misalignment of 3.4◦ away from (1 3 6).

Table 7. Comparisons of theoretical fits to the experimental data for (1 3 6) stress on the 983.21 MeV
CdA PL line in silicon.

Measured LSAPS (1 3 6) theoretical McGlynn et al (1 3 6) McGlynn et al (14 33 61)
shift rates best-fit shift rates predicted shift ratesa theoretical shift ratesb

(meV GPa−1) (meV GPa−1) (meV GPa−1) (meV GPa−1)

−35.9 ± 2.8 −35.7 −37.1 −35.5
−30.2 ± 1.6 −31.1 −33.3 −30.2
−7.0 ± 1.5 −3.3 −1.4 −3.8
−0.1 ± 2.8 −2.1 2.2 −0.1

6.2 ± 1.8 5.9 6.2 6.0
25.9 ± 2.4 25.3 25.0 24.3

Fitted stress parameters (meV GPa−1)
A1 −46.3 −49.2 −49.2
A2 12.8 15.0 15.0
A3 −17.5 −14.6 −14.6

Least square fit error (Arb.) 7.7 13.2 6.1

a Dashed lines in figure 2.
b Solid lines in figure 2.

Finally, we note that the intensities of the components at low stresses are in reasonable
agreement with those expected from an analysis of this particular crystal orientation.

5. Discussion

From a general viewpoint, in the absence of polarization information, matching the stress
induced components observed in the stress spectra with the correct theoretical shift rate from
table 3 can be problematical. However, assigning the appropriate shift rate equation to its
corresponding spectral component can be accomplished in the following manner.
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The six theoretical shift rate equations Ri , for a defect of C2v symmetry under uniaxial
stress may be written as:

Ri =
3∑
j=1

mijAj for 1 � i � 6. (23)

The Aj are constants characteristic of the defect. We construct a 6 × 3 matrix M whose entry
in the ith row and j th column is given by mij . We denote this by M = (mij )

6,3
i=1,j=1. From

table 3 we see that in this case for C2v symmetry and (X Y Z) = (1 3 6):

M = 1

46




1 45 36
1 45 −36
9 37 12
9 37 −12
36 10 6
36 10 −6


 . (24)

We define matrices S and A as follows:

S =



R1

R2
...

R6


 (25)

A =
(
A1

A2

A3

)
. (26)

Thus we can write the shift rate equations as one matrix equation:

S = MA. (27)

Experimentally we measure the six line shift rates (Li i = 1 to 6) from the piezo-spectroscopic
PL spectra. In the absence of polarization information, there are 6! (=720) ways of
substituting the six experimentally measured Li for the six theoretical shift rates Ri . Denote
the corresponding 6 × 1 matrices by Pk , where 1 � k � 720. Thus the entries of each matrix
Pk will be the six Li arranged in some order. There are 720 ‘ordered’ ways of arranging the
six Li and so there will be 720 Pk matrices.

We know the values of the entries in the matrices Pk and M. We then obtain the best ‘least
squares fit’ Fk for the unknown matrix A, for each of the 720 matrix equations Pk = MA.
This is easily done with mathematics software packages such as Maple or Matlab [7]. Thus
for each k = 1, 2, . . . , 720, Fk is the unique 3 × 1 matrix (from all 3 × 1 matrices) such that
‖Pk − MFk‖ takes on the smallest value, where ‖Pk − MFk‖2 is the sum of the squares of all
the entries in the matrix Pk − MFk . The uniqueness above follows from the fact that the rank
of the 6 × 3 matrix M is 3.

For, 1 � k � 720 we let Sk = MFk . Finally we pick out the matrix Q (from the 720 Sk),
whose six entries are the closest to the six Li , in any order, in the sense of least squares. The
six entries in Q give us our theoretical shift rate estimates for the experimentally measured
shift rates Li , 1 � i � 6. The Ri theoretical estimates listed in column 2 of table 7 are for the
CdA system and the Aj estimates come from the entries of Fr where Q = MFr .

For defects in Td host crystals, the worst case scenario would be a triclinic defect where
we have 24 Ri shift rate equations in six Ai stress parameters (see table 2). In general, we
havemRi with n Ai ,m > n. We can still proceed as in the special case outlined above for C2v

defects where M will now be anm×nmatrix and A will be an n×1 matrix. S will be anm×1
matrix. We find the ‘least squares fit’ Fk (for the unknown matrix A) where k = 1, 2, 3, . . . , n!.
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Fk will be unique if the rank of M is n. Otherwise (i.e. rank of M < n) there will be infinitely
many solutions to the least squares problem. We then proceed to find the m× 1 matrix Q that
will give us the theoretical shift rate estimates and check the errors between the theoretical
shift rate estimates and the experimentally measured Li shift rates. If the errors are within
acceptable limits, we can therefore estimate the Aj as we did in the special case.

From table 7 we see that the theoretical fits achieved using the procedure we have just
described gives Aj stress parameters that are in reasonable agreement with, and a lower least
squares fit error than, those reported previously for the CdA and other rhombic I defects in
silicon. In fact, both our results and those of McGlynn et al [8] can be fully reconciled if we
assume that there is a misalignment of 3.4◦ between the applied stress and the (1 3 6) crystal
direction. Effectively this equates to a situation where the stress is applied along the (14 33 61)
crystal direction. Under such circumstances, using the Ai values reported by McGlynn et al
[8] the most accurate fit of all (solid lines in Figure 3) is accomplished (see column 4 of
table 7). Some initial x-ray measurements of the sample orientation have been attempted,
which confirm in general the orientation of the crystal as (1 3 6) to within ∼2◦. We have not
as yet performed sufficiently accurate measurements of the orientation to establish whether
the misorientation of 3.4◦ given by our best fit (with the sample axis along (14 33 61)) is due
to a combination of a slight misalignment during the production of the sample in addition
to a slight misorientation of the sample during mounting in the stress cell, or entirely due to
misorientation during mounting in the cell.

A major advantage of this technique is evident in situations where standard uniaxial stress
analysis is unable to make unambiguous defect identification. The possible ambiguity between
trigonal A–E transitions and transitions at a centre of monoclinic I symmetry has been discussed
earlier. One may also appreciate that this technique will help in correctly identifying defect
symmetries when an ‘accidental degeneracy’ remains in one of the components (due either to
instrumental limitations and/or values of the parameters in the potential) under stress along
one of the high-symmetry directions. In addition, since LSAPS removes all orientational
degeneracy from a defect, it would be an ideal characterization technique for the study of
re-orientation effects under stress.

6. Conclusions

Our calculations show that the application of a uniaxial stress along a crystal direction of low
symmetry, such as the (1 3 6) direction, removes all orientational degeneracy from transitions
arising from defects in tetrahedral crystals. We have demonstrated experimentally that the
manifold of lines expected from a low-symmetry centre such as rhombic I may be successfully
resolved and that the splitting pattern in this case is in excellent agreement with that expected
from the theoretical discussion. This demonstrates the feasibility of using the LSAPS technique
to supplement conventional uniaxial stress methods in ambiguous cases.

Finally, we suggest that the demonstrated ability to fully remove the elec-
tronic/orientational degeneracy from low-symmetry axial centres in crystalline solids to create
a reasonably large number of inequivalent sites in the crystal may have interest for workers in
other fields, for example quantum computing.
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